
CS 466/666: Algorithm Design and Analysis University of Waterloo: Fall 2024

Homework 1
Due: Thursday, September 26, 2024

Problem 1. Suppose we pick a permutation π from [n] to [n] uniformly at random.

(a) Let X be the random variable for the number of elements in π such that π(i) = i.

Compute E [X] and Var [X] exactly. (5 points)

(b) Let Y be the random variable for the number of indices i such that if π(i) = j, then i is the largest
number among entries 1 to j in the image of π. For instance, for the permutation π of [5] below, all
such elements are marked and Y = 2:

[3, 2, 1,5, 4].

Prove that E [Y ] 6 ln (n). (5 points)

(c) Let Z be the random variable for the length of the longest increasing subsequence (LIS) in π. For
instance, for the permutation π of [5] below, the elements of one LIS are marked and we have Z = 3:

[2,3, 1,5, 4].

Prove that E [Z] = O(
√
n). (10 points)

Hint: First show that for every (non-negative) integer valued random variableX, E [X] =
∑∞

i=1 Pr (X > i).
Then, for any i ∈ [n], find an upper bound on Pr (Z > i) using Stirling approximation.

Problem 2. A family of functions H = {h | h : [n] 7→ [m]} is called a pairwise independent hash family
iff for all x 6= y ∈ [n] and a, b ∈ [m], for h chosen uniformly at random from H, we have,

Pr (h(x) = a ∧ h(y) = b) =
1

m2
.

In this problem, we investigate one method to obtain such a hash family (although this is not the most
efficient method).

(a) Let X1, X2, . . . , Xk be independent and uniform binary random variables, i.e.,

Pr(Xi = 0) = Pr(Xi = 1) = 1/2.

Given S ⊆ {1, . . . , k}, S 6= ∅, define a random variable YS = ⊕i∈SXi, i.e., the XOR of Xi’s for i ∈ S.
Prove that the set

{YS | S ⊆ {1, . . . , k} , S 6= ∅}

is a collection of pairwise independent random variables, meaning that for all non empty sets
S 6= T ⊆ {1, . . . , k} and pairs a, b ∈ {0, 1}:

Pr[YS = a ∧ YT = b] =
1

4
.

(12.5 points)
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(b) Use the construction in part (a) to design a family of pairwise independent hash functions

H = {h | h : [n] 7→ [m]}

constructed using O(log n logm) random bits and poly(log n, logm) time to compute. You may assume
that both n and m are powers of two. (12.5 points)

Problem 3. Consider a complete tree of height h, wherein the root, as well as any internal node has exactly
3 child-nodes; thus, the tree has n = 3h nodes. Suppose each leaf of the tree is assigned a Boolean value.
We define the value of each internal node as the majority of the value of its child-nodes. The goal in this
problem is to determine the value of the root.

An algorithm for this problem is provided with the structure of the tree (not the valuation of the leaves)
and at each step it can query a leaf and read its value.

(a) Show that for any deterministic algorithm, there is an instance (a set of Boolean values for the leaves)
that forces the algorithm to query all the n = 3h leaves.

(10 points)

(b) Consider the recursive randomized algorithm that evaluates two subtrees of the root chosen at random.
If the values returned disagree, it proceeds to evaluate the third subtree. Show that the expected
number of the leaves queried by the algorithm on any instance is at most n0.9. (15 points)

Problem 4. Given a set of numbers S and a number x ∈ S, the rank of x is defined to be the number of
elements in S that have value at most x:

rank(x, S) = | {y ∈ S : y 6 x} |

Given a parameter ε ∈ (0, 1/2], we say that an element x ∈ S is an ε-approximate element of rank r if

(1− ε) · r 6 rank(x, S) 6 (1 + ε) · r

Recall the streaming model of computation discussed in the class. Suppose we are given a stream of
numbers S = (s1, s2, . . . , sn), where si ∈ [m] for i ∈ [n], and assume that all si’s are distinct. Our goal is
to design an O(ε−2 logm log n) space streaming algorithm for retrieving an ε-approximate element for any
given rank value.

(a) Recall that the median of a set S of n (distinct) elements is the element of rank r = bn/2c in S.

Consider this algorithm for computing an ε-approximate median: sample O(ε−2 log n) numbers from
the stream uniformly at random (with repetition) and then return the median of the sampled numbers.
Prove that this algorithm returns an ε-approximate median with probability at least 1− 1/poly(n).

(15 points)

(b) We now extend the previous algorithm to compute an ε-approximate element of rank r for any r ∈ [n].

Consider this algorithm: Let t =
⌈
24ε−2 logm

⌉
. If r 6 t, then simply maintain a list T of r smallest

elements seen in the stream, and output the largest element in T at the end of the stream. Otherwise,
choose each element in the stream with probability t/r, and maintain the t smallest sampled values in
a list T . At the end of the stream, output the largest number in T . Prove that this algorithm outputs
an ε-approximate element of rank r with probability at least 1− 1/poly(n). (15 points)
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Problem 5 (Extra credit). Consider Problem 1 again. What is the best asymptotic upper bound on
Var [Y ] for the random variable Y in part (b) that you can establish? (+5 points)

What about the random variable Z? (+10 points)

Problem 6 (Extra credit). In the (deg +1) coloring problem, we are given an undirected graph G = (V,E)
and the goal is to find a coloring of vertices of G such that (i) no edge is monochromatic, and (ii) every
vertex v ∈ V receives a color from the set {1, 2, . . . ,deg(v) + 1} where deg(v) is the degree of v in G. The
difference of this problem with the (∆ + 1) coloring problem we saw in Lecture 1 is that vertices that have
a lower degree here can only receive a color from a smaller range of colors as well (as opposed to all vertices
having access to the same (∆ + 1) colors).

Suppose we are given access to both adjacency list and adjacency matrix of G (and we can read degree
of each vertex from its adjacency list in O(1) time). Modify the (∆ + 1) coloring algorithm of Lecture 1 to
solve the (deg +1) coloring problem in O(n

√
n log n) expected time. (+15 points)
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