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1 Proof of Lovász Local Lemma

In the previous two lectures, we worked with Lovász Local Lemma (LLL) and its algorithmic version. We
now prove a slightly weaker form of LLL to provide more intuition about it (notice that we effectively replace
1/e in the original statement with a weaker constant of 1/4).

Theorem 1 (Symmetric LLL – “Weak” Form). Suppose B1, . . . , Bn are a collection of events. If:

1. Pr (Bi) 6 p for every i ∈ [n], for some p ∈ (0, 1);

2. and, the events admits a dependency graph with maximum degree d > 1,

Then, as long as

p · d 6 1/4

the probability that none of B1, . . . , Bn happens is strictly more than zero.

Proof. Define Ai to be the complement of the event Bi. Moreover, for any i ∈ [n], define A<i as the event
that A1, . . . , Ai−1 happens. Our goal is to prove that

0 < Pr
(
∧ni=1B̄i

)
= Pr (∧ni=1Ai) =

n∏
i=1

Pr
(
Ai | ∧i−1

j=1Aj
)

=

n∏
i=1

Pr (Ai | A<i) .

Thus, we have to prove that
Pr (Ai | A<i) > 0 ⇐⇒ Pr (Bi | A<i) < 1

for all i ∈ [n]. We actually prove a stronger statement inductively:

Induction hypothesis: For any i ∈ [n] and any set S ⊆ [n] \ {i},

Pr (Bi | AS) 6 2p,

where AS is defined as ∧j∈SAj .

The base case for each i ∈ [n] and S = ∅ follows immediately because Pr (Bi) 6 p by the theorem
statement. We now prove the induction step.
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Step 1. We know that Bi only depends on d other events in N(i) so we should find a way to “get rid of”
the remaining terms in AS . To do so, we write,

Pr (Bi | AS) = Pr
(
Bi | AS∩N(i) AS\N(i)

)
=

Pr
(
Bi ∧AS∩N(i) | AS\N(i)

)
Pr
(
AS∩N(i) | AS\N(i)

) (by the definition of conditional probability)

6
Pr
(
Bi | AS\N(i)

)
Pr
(
AS∩N(i) | AS\N(i)

) (as Pr(C ∧D) 6 Pr(C) for any events C,D)

=
Pr (Bi)

Pr
(
AS∩N(i) | AS\N(i)

) (because Bi is independent of events outside N(i))

6
p

Pr
(
AS∩N(i) | AS\N(i)

) . (as Pr (Bi) 6 p in the theorem statement)

The only “real” inequality above is the step that we are dropping ∧AS\N(i) (the other inequality might as
well be tight also because we have no control over the gap between Pr(Bi) and p in the theorem statement).
As we shall see, the “math is going to work out” even when taking this inequality but it is good to see why we
should intuitively make such a step. This is because, AS∩N(i) only contains d terms and in the next step we
are going to prove that these terms actually happen with a “large enough” probability (some constant more
than zero); As a result, we are not “dropping” a very low probability event that can make the inequality
quite loose.

Step 2. We know need to lower bound the denominator of the RHS above. But now, this term only depends
on d events in total and we can try to simply use a union bound to get a loose bound here. Specifically, we
can write

Pr
(
AS∩N(i) | AS\N(i)

)
= 1− Pr

(
∨j∈S∩N(i)Bj | AS\N(i)

)
> 1−

∑
j∈S∩N(i)

Pr
(
Bj | AS\N(i)

)
.

Given that N(i) has at least one element (as otherwise Bi is independent of all other events and trivially
satisfies the induction hypothesis), we have that |S\N(i)| < |S|. Thus, we can apply our induction hypothesis
and obtain that for every j ∈ S ∩N(i),

Pr
(
Bj | AS\N(i)

)
6 2p.

Plugging this bound above gives us

Pr
(
AS∩N(i) | AS\N(i)

)
> 1−

∑
j∈S∩N(i)

2p > 1− 2p · d > 1/2,

where the last inequality is by the assumption in the theorem statement that p · d 6 1/2.

Plugging in the bounds of step 2 on the last equation of step 1 give us

Pr (Bi | AS) 6
p

1/2
6 2p,

as desired. This concludes the proof.

It is worth mentioning that the statement of Theorem 1 is actually the original version of LLL proven
by Erdős and Lovász in [EL75].

2 Asymmetric Lovász Local Lemma

A (slightly) careful view of the proof of Theorem 1 reveals that we actually really do not need a “symmetric”
bound on the probabilities and degrees of all bad events. Instead, we can even prove the following variant:
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Theorem 2 (Asymmetric LLL – “Weak” Form). Suppose B1, . . . , Bn are a collection of events. If:

1. Pr (Bi) 6 p for every i ∈ [n], for some p ∈ (0, 1);

2. and, the events admits a dependency graph wherein event Bi depends only on the events Bj for j ∈ N(i),

Then, as long as for every i ∈ [n],

Pr (Bi) +
∑

j∈N(i)

Pr (Bj) 6 1/4,

the probability that none of B1, . . . , Bn happens is strictly more than zero.

We leave the proof of this version as an exercise (Hint: Change the induction hypothesis to prove that
Pr(Bi | AS) 6 2 · Pr(Bi); the rest should follow exactly as before). However, let us see how this stronger
version can be helpful in the following simple application.

2.1 Frugal Coloring

Consider the problem of vertex coloring a graph G = (V,E) with maximum degree ∆. We already discussed
that we can always color the graph with ∆ + 1 color without creating any monochromatic edges. We are
now going to throw in another side constraint. We say that a coloring is β-frugal for some integer β > 1 iff
in the neighborhood of every vertex v ∈ V , any single color c is used at most β times. In other words, no
color can appear more than β times in any N(v) for v ∈ V .

It is easy to see that every graph has an O(∆2) coloring which is 1-frugal: For each v ∈ V , connect all
vertices N(v) to each other to turn the “old” neighborhood of v into a clique. Then, properly color this
graph which can be done with its maximum degree plus one color, which is ∆2 + 1. The following result of
Hind, Molloy, and Reed [HMR97] shows a relaxing the value of β allows for much fewer number of colors.

Proposition 3 ([HMR97]). For every integers β > 1 and ∆ > ββ, every graph G = (V,E) with maximum
degree ∆ admits a proper k := 100 ·∆1+1/β coloring which is β-frugal.

Proof. Suppose for every vertex v ∈ V , we pick a color c(v) uniformly at random from [k]. Is this a proper
k-coloring which is also β-frugal with non-zero probability?

We have the following two types of “bad” events:

• For each edge (u, v) ∈ E, Buv: the color of both vertex u and v is the same, i.e., we have c(u) = c(v)
(this violates the proper coloring condition);

• For each vertex v ∈ V and S ⊆ N(v) with β+ 1 vertices, BvS : the color of all vertices in S is the same
(this violates the β-frugal coloring condition).

We have,

Pr (Buv) =
1

k
and Pr (Bv,S) =

1

kβ
.

Dependency for Buv. Each event Buv depends on the following:

• Bwz if {u, v} ∩ {w, z} is non-empty. This means there are most 2∆ such events (one for each of 2∆
edges incident on u or v).

• BwT if u or v belongs to T . This means there are at most 2∆ ·
(

∆
β

)
such events (one

(
∆
β

)
for each of

the ∆ neighbors of u, and similarly for v).
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This means that

Pr (Buv) +
∑

Bwz∈N(Buv)

1

k
+

∑
BwT∈N(Buv)

1

kβ
6

1

k
+

2∆

k
+

2∆ ·∆β

kβ
6

1

∆1/β
+

2

100β
< 1/4.

Dependency for BvS. Each event BvS depends on the following:

• Bwz if {w, z} ∩ S is non-empty. This means there are most (β + 1) · ∆ such events (one for each ∆
neighbor of each of the β + 1 vertices in S).

• BwT if S ∩ T is non-empty. This means there are at most (β + 1) ·∆ ·
(

∆
β

)
such events (β + 1 choice

for picking a vertex from S to intersect with T , ∆ choice for picking w, and
(

∆
β

)
for the rest of T ).

This means that

Pr (BvS)+
∑

Bwz∈N(BvS)

1

k
+

∑
BwT∈N(BvS)

1

kβ
6

1

k
+

(β + 1) ·∆
k

+
(β + 1) ·∆ ·

(
∆
β

)
kβ

6
β + 1

∆1/β
+

2eβ · (β + 1)

(100β)β
< 1/4.

Consequently, the total probability in the neighborhood of each vertex is at most 1/4. This allows us to
apply Theorem 2 and have that there is an assignment of colors wherein none of the bad events happens. In
this case, we obtain a coloring as desired, concluding the proof.

We conclude this part by mentioning that there are even more general versions of the LLL that one may
want to use depending on the application in mind. In some relatively rare cases also, one should instead
use the Entropy Compression method of last lecture to prove LLL-type results that do not exactly fit the
framework of LLL.
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