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1 Multiplicative Weight Update for the Matching Linear Program

In the last lecture, we studied several MWU-type algorithms and saw how to analyze them. We will now use
the same set of ideas to design algorithms for solving (some) LPs approximately. The approach we use in
this section (at least in its first part) is quite general and can be applied to many other LP (and “LP-type”)
problems. However, to keep things concrete and for providing more intuition, we will focus on the maximum
matching LP that we have worked on a lot with already in this course.

The LP Relaxation of Matching. For any graph G = (V,E), we can write the following LP as a
relaxation for the maximum matching problem in G:

max
x∈RE

∑
e∈E

xe

subject to
∑
e3v

xe 6 1 ∀v ∈ V

xe > 0 ∀e ∈ E. (1)

Recall that in Lecture 8, we showed that this LP relaxation for bipartite graphs have integrality gap, i.e.,
we can round any fractional solution to this LP to an integral one without decreasing its size. The LP is
well-defined for all graphs (not only bipartite ones), although for general graphs, its integrality gap is 2/3
(think of a triangle). For now, we only focus on solving this LP near-optimally and ignore any rounding
aspects; hence, we will just work with general graphs.
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1.1 The Setup and the Oracle LP

The idea behind the MWU algorithm for solving any LP is to repeatedly reduce the problem to solving a much
simpler LP, often called the oracle LP. The oracle LP is obtained from the original LP by partitioning the
constraints of the LP into “easy” and “hard” ones, and then focusing only on solving a convex combination
of the “hard” constraints instead of all of them. This may sound too abstract and vague, so let us try to
clarify this further.

Suppose we have some weights wv > 0 on each vertex v ∈ V . Define W :=
∑
v∈V wv. Consider the

following simpler LP called the oracle LP with weights {wv}v∈V :

max
x∈RE

∑
e∈E

xe

subject to
∑
v∈V

wv
∑
e3v

xe 6W

xe > 0 ∀e ∈ E. (2)

Notice that this LP is simpler than the original LP in that instead of the n “hard” constraints of the original
LP—one for each vertex of the graph—we now only have a single constraint for their convex combination.

Observation 1. For any choice of weights wv > 0 for v ∈ V , the optimal objective value of LP (2) is at
least as large as that of LP (1).

Proof. Any feasible solution x to LP (1) satisfies the following equation for every v ∈ V :∑
e3v

xe 6 1

Thus if we multiply each side by wv > 0, we will still get

wv ·
∑
e3v

xe 6 wv;

and, if we further sum up both sides on all vertices v ∈ V , we get∑
v

wv ·
∑
e3v

xe 6
∑
v

wv = W.

Thus, any feasible solution to LP (1) is also a feasible solution to LP (2). As both LPs are maximization
LPs with the same objective, we obtain the result.

Moreover, solving this LP is also much simpler than the original one. For every edge e = (u, v) ∈ E,
define the artificial weight of the edge e to be

aw(e) := wu + wv.

We have, ∑
v∈V

wv ·
∑
e3v

xe :=
∑

e=(u,v)∈E

xe · (wu + wv) =
∑
e∈E

aw(e) · xe.

Hence, the single main constraint of LP (2) is equivalent to:∑
e∈E

aw(e) · xe 6W. (3)

But then it means that to obtain the optimal solution to LP (2), we simply need to find

e∗ := arg min
e∈E

aw(e)
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and then set

xe∗ :=
W

aw(e∗)
and xe = 0 for all other e 6= e∗. (4)

This clearly maximizes
∑
e∈E xe (because “moving” any value from xe∗ on any other xe can only make the

constraint violated without helping with the objective value). We summarize this as follows.

Observation 2. The optimal solution to LP (2) is given by Eq (4).

1.2 The Algorithm

So now how can we use this oracle LP for solving the original LP? Notice that if we put a large weight on
a vertex, we will “move” the optimum solution of the oracle LP away from that vertex; thus, by adjusting
the weights of the constraints, we can make them more important or reduce their importance, hence getting
the oracle LP to “focus” on different parts of the graph. Then, by taking the average of all the solutions
we found, we will hopefully get a solution which is handling every constraint of LP (1) (approximately). We
show how we can update the weights using MWU to achieve this goal.

The algorithm is formally as follows (the algorithm has two parameters η > 0 and T > 1 that will be
determined later).

Algorithm 1. A MWU algorithm for the Matching LP.

1. For every vertex v ∈ V , let w
(1)
v = 1.

2. For t = 1 to T iterations:

(a) Let x(t) be the optimal solution to the oracle LP with weights w(t) according to Eq (4).

(b) For every vertex v ∈ V , update:

w(t+1)
v =

(
1 + η ·

∑
e3v

x(t)e

)
· w(t)

v .

3. Return the final solution

x̄ :=
1

T
·
T∑
t=1

x(t).

A note that the update rule basically means in each iteration the two vertices u, v incident on the optimal
edge of Eq (4) are having their weight increased (somewhat proportional to the “violation” of their matching
constraint in the original LP) and all other vertices retain their original weight. However, it will be easier
to work with the given formulation both for the current analysis, as well as future improvements.

Let ε > 0 be a parameter and recall that our goal is to obtain a (1 + ε)-approximation to LP (1)
via Algorithm 1. The choice of ε will play a role in determining the values of η and T . The following is the
main lemma for this algorithm.

Lemma 3. For a proper choice of η and T , the output x̄ of Algorithm 1 satisfies the following:∑
e∈E

x̄e > OPT (5)∑
e∈v

x̄e 6 1 + ε for all v ∈ V (6)

where OPT is the optimum value of LP (1).
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Notice that the statement of this lemma does not imply x̄ is feasible for LP (1), even though its value is
as good as the optimal one. However, we can simply rescale x̄ with (1 + ε), i.e., consider x̄/(1 + ε) as our
solution which is now feasible and a (1 + ε)-approximation to LP (1)

1.3 The Analysis

It thus remains to prove Lemma 3 to finalize the whole proof.

Proof of Eq (5) for all choices of η, T . We start with the easy part first which is to prove Eq (5).
By Observation 1, we have that for every t > 1, the optimum solution x(t) satisfies∑

e∈E
x(t)e > OPT.

Thus, the average solution x̄ also satisfies this equation, hence proving Eq (5) no matter what is the choice
of η and T .

Proof of Eq (6) for proper choices of η, T . We now prove the main part. We follow a similar potential
function argument as the one for the expert problem in the previous lecture. Our potential function is again

W (t) :=
∑
v∈V w

(t)
v , namely, the total weights of the vertices. The first part is to show that the potential

does not increase too much.

Claim 4. For every choice of T > 1, we have that at the end of the last iteration

W (T+1) 6 exp (η · T + lnn) .

Proof. For every t > 1,

W (t+1) =
∑
v∈V

w(t+1)
v (by the definition of W (t+1))

=
∑
v∈V

1 + η ·
∑
e3v

x(t)e · w(t)
v (by the update rule of the algorithm)

=
∑
v∈V

w(t)
v + η ·

(∑
v∈V

w(t)
v ·

∑
e3v

x(t)e

)
(by rearranging the terms)

= W (t) + η ·

(∑
v∈V

w(t)
v ·

∑
e3v

x(t)e

)
(by the definition of W (t))

6W (t) + η ·W (t) (by the feasibility of x(t) in the oracle LP (2))

= (1 + η) ·W (t).

As a result, and since W (1) = n, we obtain that after the T -th iteration:

W (T+1) 6 (1 + η)T · n 6 exp (η · T ) · n = exp (η · T + lnn) ,

where we used the inequality 1 + x 6 ex for all x > 0.

The second part is to show that if there is a vertex v that even at the end of the T iterations does not
satisfy Eq (6), its weight should have increased by a lot. Specifically, we have a vertex v ∈ V such that after
T iterations, it still does not satisfy Eq (6), i.e.,∑

e3v
x̄e > (1 + ε).

This equivalently means that

T∑
t=1

∑
e3v

x(t)e > (1 + ε) · T. (7)
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Claim 5. For every choice of T > 1 if a vertex v satisfies Eq (7) at the end of the last iteration, then,

w(T+1)
v > exp

(
η · (1 +

ε

4
) · T

)
,

as long as ε < 1/2 and η 6 ε/2ρv for ρv defined as:

ρv := max
t>1

∑
e3v

x(t)e .

Proof. We have,

w(T+1)
v =

T∏
t=1

(
1 + η ·

∑
e3v

x(t)e

)
(by the update rule and since w

(1)
v = 1)

>
T∏
t=1

exp

η ·∑
e3v

x(t)e − η2 ·

(∑
e3v

x(t)e

)2
 ,

as long as η < 1/ρv because for such choice of η, we can apply the inequality 1 + y > ey−y
2

which holds for
y ∈ (0, 1). Continuing the above equations, we get,

w(T+)
v > exp

η · T∑
t=1

∑
e3v

x(t)e − η2 ·
T∑
t=1

(∑
e3v

x(t)e

)2
 (by using eα · eβ = eα+β)

> exp

(
η ·

T∑
t=1

∑
e3v

x(t)e − η2 · ρv ·
T∑
t=1

∑
e3v

x(t)e

)
(by replacing

∑
e3v x

(t)
e 6 ρv)

> exp

(
η ·

T∑
t=1

∑
e3v

x(t)e −
ε

2
· η ·

T∑
t=1

∑
e3v

x(t)e

)
(by the assumption on the value of η)

= exp

(
η(1− ε

2
) ·

T∑
t=1

∑
e3v

x(t)e

)
> exp

(
η · (1− ε

2
) · (1 + ε) · T

)
(by Eq (7))

> exp
(
η · (1 +

ε

4
) · T

)
, (as ε < 1/2)

concluding the proof.

Since all the weights are positive, for any vertex v ∈ V , as long as we pick η < ε/2ρv as prescribed
by Claim 5, we obtain that for v to satisfy Eq (7) we need to have,

exp
(
η · (1 +

ε

4
) · T

)
6 w(T+1)

v 6W (T+1) 6 exp (η · T + lnn) ,

where the LHS inequality is by Claim 5 and the RHS inequality is by Claim 4. This implies that

η · (1 +
ε

4
) · T 6 η · T + lnn,

which in turn means

T 6
4 lnn

η · ε
.

Thus, after these many iterations, all vertices violated Eq (7) and thus in turn satisfy Eq (6).

We state all these—for future reference—in the following lemma (whose proof already appeared above).
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Lemma 6. For any ε ∈ (0, 1/2), if we run Algorithm 1 for T > 8ρ·lnn
ε2 iterations for

ρ > max
v∈V

max
t>1

∑
e3v

x(t)e ,

with parameter η = ε
2ρ , then the output solution x̄ satisfies Eq (6).

Finally, we emphasize that in the proof of Lemma 8, we never once used the fact that each x(t) returned
by the algorithm is optimal for the oracle LP (2), only that it is feasible (this is the exact opposite of the
case when proving Eq (5).

1.4 Runtime Analysis

Unfortunately, we are still not done entirely, because it is not clear how to pick the parameter ρ needed

in Lemma 8. Notice that ρ is basically the largest value we will ever assign to any edge e in any x
(t)
e in any

of the iterations (technically, it is the largest value of
∑
e3v x

(t)
e but since the algorithm only assigns value

to a single edge in each iteration, these two are the same). But how can we bound this quantity?

The key observation is that we do not need to solve each oracle LP (2) optimally! We only need to solve
it as good the value of the original LP (1); this is because, even in that case, we can still prove Eq (5) exactly
as it is (and lower bound the value of each x(t) by OPT still, which is what we did anyway), and Eq (6) does
not have anything to do with the optimality of x(t), only its feasibility.

But now, we do know that OPT 6 n always because it is optimal solution to a matching LP. This
implies that in Line (2a) of Algorithm 1, we can in fact replace x(t) computed in Eq (4) by the following
(e∗ := arg mine∈E aw(e) is as before):

xe∗ := min

(
n,

W

aw(e∗)

)
and xe = 0 for all other e 6= e∗,

i.e., we are now taking the minimum of the previously chosen value and n > OPT. This ensures that every
x(t) still have value at least OPT while also continue to be feasible. Thus, we obtain both Eq (5) and Eq (6)
as before with no other changes to the proof.

The benefit of this is that we now can say ρ 6 n because we will never assign a larger value in any
iteration of the algorithm. This allows us to pick a choice of η 6 ε/2n as well which gives us an actual
algorithm (with known parameters throughout).

Finally, the number of iterations of this algorithm is

O(
n lnn

ε2
)

by Lemma 8. Each iteration also requires us finding the edge with minimum artificial weight aw(e) (based
on the weight function w(t)). It is easy to see that each update only changes the weight of O(n) other edges
and thus we can maintain the edges in a min-heap and run each iteration of the algorithm in O(n log n) time
or a Fibonacci heap and O(n) time (in fact, here simpler solutions with O(n) time also exist). Thus, the
total runtime of the algorithm is

O

(
n2

ε2
· log n

)
time.

2 A Faster MWU Algorithm for Bipartite Matching

Let us see how we can use the MWU method differently to reduce the number of iterations dramatically. As
stated in Lemma 8 and earlier in the proof, “all” we need to be able to use MWU efficiently is the following:
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• We should be able to solve the oracle LP (2) as well as the original LP (1) and not at all necessarily
optimally – this ensures our output will also be (nearly) optimal;

• We would like to reduce the width parameter ρ (defined in Lemma 8) to be as small as possible – this
ensures the number of iterations will be as small as possible.

While the strategy we outlined previous to this more or less works for any LP, we can often use the underlying
properties of our specific LP to obtain even faster algorithms. To show case this, we will consider the
bipartite matching problem now and show how we can make the above algorithm even faster.

2.1 A Faster Algorithm via a Better Oracle

As we proved earlier in the course (in Lecture 8), the integrality gap of LP (1) on bipartite graphs is one.
Thus, we can assume that there is always a matching MOPT of size OPT in the in the input graph G. On
the other hand, recall the Oracle LP (2) problem, when stated with the artificial weights of edges:

max
x∈RE

∑
e∈E

xe

subject to
∑
e∈E

xe · aw(e) 6W

xe > 0 ∀e ∈ E. (8)

Thus, we are saying that there is a matching MOPT in the graph G with the total artificial weight at most
W (no matter what weights we are choosing for the vertices and thus, in turn, the artificial weight of edges).

Now, consider our previous approach of picking the edge e∗ with minimum weight and setting xe∗ = OPT
and xe = 0 for all e 6= e∗ (we actually put a different value because we do not know OPT, but you can see
that had we known OPT, using this choice would have worked as well). We can think of this strategy as
follows: while MOPT has OPT edges with weight at most W , we can find a single edge with weight at most
W/OPT – thus, on this single edge, we are competing quite favorably with the optimum in terms of “bang
for the buck”: how much we contribute to objective value versus the main constraint of the Oracle LP. The
problem with this approach was that we needed to put a very large value on xe∗ and thus get a large width
ρ, which in turn led to a large number of iterations in the algorithm.

But, now suppose could pick k edges with weight W/k still for some k > 1. Can we again compete
favorably with the optimum solution? Yes; do we get a lower width? Not necessarily because the width is
determined by the largest x-value we put on a single vertex and not an edge. Thus, just picking k edges is
not enough. But what if these k edges form a matching? Then, indeed we can reduce the width to OPT/k
also by putting an x-value of OPT/k over each of these edges. This is precisely what our better oracle does.

Algorithm 2. A Better Oracle for the Bipartite Matching LP.

1. Sort the edges in the increasing order of their artificial weights (determined by the input weights
on the vertices).

2. Let M = ∅. While the artificial weight of M is less than or equal to W/2:

• Pick the lowest weight available edge e in M if both its endpoints are unmatched, and
otherwise skip this edge.

3. Return x = 2 · 1M where 1M denotes the characteristic vector of the matching M ⊆ E.

Lemma 7. Size of M in Algorithm 2 is at least OPT/2 for all choices of the artificial weights on the edges.

Proof. Let e1, e2, . . . , eOPT/2 be the first OPT/2 edges of M in the order added to M and o1, o2, . . . , oOPT

be the edges of MOPT sorted in the increasing order of their artificial weight. We claim inductively that for
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every i ∈ [OPT/2],
i∑

j=1

aw(ej)︸ ︷︷ ︸
aw(e6i)

6
1

2
·

2i∑
j=1

aw(oj)︸ ︷︷ ︸
aw(o62i)

;

in words, the total weight of the first i edges in M , denoted by aw(e6i) is at most half the total weight of
the first 2i edges in MOPT, denoted by aw(o62i).

The base case for i = 1 holds because aw(e1) is smaller than all other edges in the graph and thus in
particular is half of the aw(o1) + aw(o2).

For induction case, suppose we are adding the edge ei in this iteration. Since e1, . . . , ei−1 is a matching,
each of these edges can be incident on at most two edges in MOPT. Thus, by the pigeonhole principle, among
the edges o1, o2, . . . , o2i−1, o2i, there are at least two edges that are not incident on any of these edges. Hence,
when picking ei, we could have alternatively picked any of these two edges, which means that weight of ei is
at most equal to the weight of each of these two edges. In particular, we definitely have,

aw(ei) 6
1

2
· (aw(o2i−1) + aw(o2i)) .

Moreover, by induction, we have that

aw(e6i−1) 6
1

2
· aw(o62i−2).

Combining these two implies the induction hypothesis.

The lemma now follows from this because we have the weight of the first OPT/2 edges of M is at most
W/2 and thus the algorithm picks at least OPT/2 edges before terminating.

As a result, if we use Algorithm 2 in Line (2a) of Algorithm 1, we will still obtain a feasible solution to
the Oracle LP (2) with value as large as OPT. Plugging this in Lemma 8, we also obtain that

ρ = max
v∈V

max
t>1

∑
e3v

x(t)e = 2,

because in each iteration, each vertex is incident on at most one edge of M (because it is a matching) and
the value we put on edges of M is only 2. Thus, the number of iterations of our algorithm is now only

O(
lnn

ε2
),

namely, a factor of n smaller than what it was before. Each iteration also takes O(m logm) time if we sort
the edges directly using any sorting algorithm. We can in fact implement each iteration in O(m) time also
because the artificial weight of an edge is simply determined by the number of times each of its endpoints
is matched so far, which is an integer; so, we can simply use Radix sort (or any other fast integer sorting
algorithm) to sort their weight in O(m) time. All in all, this gives us an algorithm with runtime

O

(
m · lnn

ε2

)
.

2.2 An Even (Slightly) Better Algorithm for Additive Approximation

Finally, to show case an important feature (or rather “weakness” in the way we analyzed Algorithm 1), let
us show that if our goal is to settle for a slightly weaker approximation guarantee of outputting a matching
of size OPT− ε · n, instead of (1− ε) ·OPT, we can reduce the number of iterations to be independent of n,
i.e., remove the lnn-term.
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So, why did we need the lnn-term in the analysis of Algorithm 1 and in particular Lemma 8? This was
essentially because we were comparing the weight of a single constraint v which were violated, against the
entire potential function (a combination of n different weights). In other words, we should have run the
algorithm long enough such that even one violated constraint could overweight all n constraints. But, what
if we set our goal to make sure there are < ε · n violated constraints, namely,∑

e3v
x̄e > (1 + ε),

for < ε · n vertices v ∈ V . Why is this good enough for Θ(ε n) additive approximation? Notice that
in Algorithm 2, we never violated a constraint with more than 2 so we always have∑

e3v
x̄e 6 2,

(because ρ = 2). Thus, after we have < ε · n violated constraints, we can simply remove all values of x
incident on their edges so they become feasible. But this means that we reduce the value of x̄ with at most
2ε n in total. Thus, after this modification, we obtain a solution which satisfies all constraints up to a (1+ε)
factor and its value is at least OPT − 2ε n. This implies that we obtain a solution which is a OPT − 3ε · n
after re-scaling x̄ to become x̄/(1 + ε). Finally, to obtain an additive ε n approximation (instead of 3ε n, we
can simply start this algorithm with ε replaced by ε/3).

The final question is how many iterations we need to reduce the number of violated constraints to < ε ·n?
This is handled by the following lemma.

Lemma 8. For any ε ∈ (0, 1/2), if we run Algorithm 1 for T > 8ρ·ln (1/ε)
ε2 iterations for

ρ > max
v∈V

max
t>1

∑
e3v

x(t)e ,

with parameter η = ε
2ρ , then the output solution x̄ only violates Eq (6) for at most ε · n constraints.

Proof. Recall that by Claim 5, if a vertex v violates Eq (6)—or equivalently satisfies Eq (7)—at the end of
the last iteration, then,

w(T+1)
v > exp

(
η · (1 +

ε

4
) · T

)
.

Let S be the set of all violating vertices and suppose towards a contradiction that |S| > ε ·n. We thus have,∑
v∈S

w(T+1)
v > ε · n · exp

(
η · (1 +

ε

4
) · T

)
= exp

(
η · (1 +

ε

4
) · T + ln ε+ lnn

)
.

On the other hand, by Claim 4,
W (T+1) 6 exp (η · T + lnn) .

Given that the LHS of the first equation is still upper bounded by the LHS of the next equation, we have

η · (1 +
ε

4
) · T + ln ε+ lnn 6 η · T + lnn,

which implies that

T 6
4 · ln (1/ε)

η · ε
.

Replacing η with its value finalizes the proof.

This implies that after running the algorithm for only O(ln (1/ε)/ε2) iterations, we obtain the desired
solution. In general, the ideas in this part can be very helpful for reducing the number of iterations to
something independent of n.
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