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1 The Online Matching Problem

We will study another application of the LP duality in the analysis of the algorithms, this time to the
online (bipartite) matching problem. In this problem, we have a bipartite graph G = (L,R,E) with
|L| = |R| = n, where vertices in L are considered ‘online’ and vertices in R are ‘offline’. At each time step, a
vertex u ∈ L arrives and only then we get to see all edges of u to R at the same time. Moreover, we need to
decide, irrevocably, which edge incident on u, if any (or if possible at all), to add to our matching M (while
ensuring that M remains a matching, i.e., u cannot be matched to an already matched vertex in R). The
objective of the algorithm is to maximize the size of the matching M it returns.

The online matching problem belongs to the large family of online algorithms which concerns problems
in which information about the input is revealed over a sequence of time steps and the algorithm must make
decisions (often irrevocably) in each time step, without knowing about the information in future steps. We
often analyze the performance of online algorithms via the notion of competitive ratio, namely, the ratio
of the quality of the solution returned by the online algorithm, versus the offline optimal algorithm that is
aware of the the entire input. In the context of the online matching problem, we are interested in maximizing

|M |
opt(G)

,

where opt(G) denotes the maximum matching size in G.

1.1 Deterministic Algorithms?

There is a quite simple deterministic algorithm for online matching already: whenever u arrives, match u
to any of its unmatched neighbors if available (chosen arbitrarily), and otherwise skip matching u. We call
this the greedy algorithm.

The greedy algorithm outputs a maximal matching, namely, a matching which is not a proper subset of
any other matchings. As we proved in the last lecture, this means that |M | > (1/2) · opt(G), thus, this is a
(1/2)-competitive algorithm.
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Can we do better? No (at least, as long as we want a deterministic algorithm). See the example below:

Figure 1: Vertex u1 arrives first and at this point it is oblivious to which of the two edges it should pick.
Whichever vertex v the algorithm chooses to match u1 with is going to also be the sole neighbor of the vertex
u2 that arrives next. Thus, the algorithm can only get a matching of size 1 while the optimum matching is
of size 2. Hence, the competitive ratio of the deterministic algorithms cannot be better than half.

1.2 Randomized Algorithms?

The example we saw above only works against deterministic algorithms. This is because, when talking
about randomized algorithms, we need to fix the input sequence (even though we are not revealing it to the
algorithm), and then let the algorithm picks its randomness independent of the input1. In this case, we will
be interested in the expected competitive ratio of the algorithm, namely,

E |M |
opt(G)

.

We can think of a very simple randomized strategy to “break” the above example: when a vertex u ∈ L
arrives, match u to one of its unmatched neighbors chosen uniformly at random. Let us call this the
randomized greedy algorithm. The randomized greedy algorithm now works as follows in the above example:

Figure 2: The final graph is now fixed even though the algorithm is oblivious to it. Each of the middle cases
happen with probability 1/2, so E |M | = 1/2 · 1 + 1/2 · 2 = 3/2, while opt(G) = 2. Hence, the expected
competitive ratio of randomized greedy on this particular input is 3/4.

Nevertheless, randomized greedy still cannot get better than a 1/2+o(1) competitive ratio. One example
is the following:

1This is called an oblivious adversary assumption; there are other types of adversaries but that is a topic for another time...
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Figure 3: The thin (normal) edges form a perfect matching between the two components, while the cross
thick (hashed) edges is a bi-clique between the two components. Here, L1 arrives before L2. Even by the
time the last vertex in L1 arrives and even if all of previous vertices were matched to R2, still, the probability
that this vertex picks the edge to R1 is at most 1/(

√
n+ 1) < 1/

√
n. This means that the expected number

of vertices that are matched from L1 to R1 is only O(
√
n). Hence, the largest matching found by the

randomized greedy algorithm in expectation only has size n/2 +O(
√
n), while this graph has a matching of

size n. Thus, the expected competitive ratio is only 1/2 + o(1).

Can we do better? Yes indeed. This is done by correlating the random choice of online vertices in L, so
that even though marginally each one is still picking a random unmatched neighbor, overall, they collectively
“value” some vertices in R over the others. We formalize this in the next subsection.

1.3 The Ranking Algorithm

A better strategy than the randomized greedy algorithm is the so-called Ranking algorithm, introduced
by Karp, Vazirani, and Vazirani in 1990 [KVV90], who also defined the online matching problem itself
(this algorithm is also often called the KVV-algorithm). The algorithm is as follows. We give two clearly
equivalent interpretation of the algorithm; the first one is easier to implement algorithmically, while the
second one is easier to work with analytically.

Algorithm 1. The Ranking Algorithm of [KVV90]

1. Sample a random permutation π of vertices in R

Alternate way : sample a real number pv ∈ [0, 1] for every v ∈ R.

2. For each arriving vertex u ∈ L, let UN(u) denote the set of unmatched neighbors of u. If UN(u) = ∅
skip to the next vertex, otherwise, let v = arg minw∈UN(u) π(w). Add (u, v) to the matching M .

Alternate way : let v = arg minw∈UN(u) pw.

The following theorem of [KVV90] establishes the expected competitive ratio of Ranking.

Theorem 1 ([KVV90]). For any online matching instance G = (L,R,E), the matching M output by
Ranking(G) satisfies E |M | > (1− 1/e) · opt(G).

Moreover, despite its simplicity, the (1 − 1/e)-expected competitive ratio of Ranking is also optimal
among all online algorithms for bipartite matching! In other words, one cannot hope to achieve an algorithm
with a better competitive ration (even regardless of the runtime or simplicity of the algorithm)! While this
fact has an easy proof, we will not cover that for now and instead skip directly to the analysis of Ranking
and the proof of Theorem 1.
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2 A Primal-Dual Analysis of the Ranking Algorithm

The original proof of Theorem 1 in [KVV90] is rather complicated. We will instead cover a different proof
for this theorem due to Devanur, Jain, and Kleinberg [DJK13] that uses a primal-dual approach (not quite
unlike what we did in the last lecture also) and is considerably simpler.

A quick reminder that the primal and dual LPs for fractional matchings and fractional vertex covers are,
respectively:

Primal LP (P): Fractional Matching

max
x∈RE

∑
e∈E

xe

subject to
∑
e∈u

xe 6 1 ∀u ∈ L∑
e∈v

xe 6 1 ∀v ∈ R

xe > 0 ∀e ∈ E.

Dual LP (D): Fractional Vertex Cover

min
y∈RL,z∈RR

∑
u∈L

yu +
∑
v∈R

zv

subject to yu + zv > 1 ∀(u, v) ∈ E
yu, zv > 0 ∀u ∈ L, v ∈ R.

Let us define our dual variables. To do so, we first need to pick a function g : [0, 1]→ [0, 1] with several
properties that we will have to fix throughout the proof. At the end, we show how to pick a choice of g that
satisfies these properties and is “best” for our purpose2. The dual variables are as follows:

• If a vertex u ∈ L or v ∈ R is unmatched, we set yu = 0 or zv = 0.

• If a vertex u ∈ L is matched to a vertex v ∈ R by M , we set

yu := (1− g(pv)) and zv := g(pv).

Given that our interest is in E |M | (and not each M specifically), we will also define “expected dual
variables”

ỹ := E [y] z̃ := E [z] ,

where specifically, we mean that ỹ ∈ RL is such that ỹu := E [yu] for all u ∈ L and similarly z̃ ∈ RR is such
that z̃v := E [zv] for all v ∈ R.

The first (easy) lemma establishes the competitive ratio of the algorithm as a function of the dual variables
via a simple primal-dual analysis.

Lemma 2. Suppose there exists a β ∈ (0, 1) such that for every edge (u, v) ∈ E, ỹu + z̃v > β. Then,

E |M | > β · opt(G).

Proof. For any fixed choice of y, u, we have,

|M | =
∑

(u,v)∈M

1 =
∑

(u,v)∈M

yu + zv (as yu + zv = (1− g(pv)) + g(pv) = 1)

=
∑
u∈L

yu +
∑
v∈R

zv. (as yu = 0 and zv = 0 for every unmatched u and v)

2Well, if you cannot (or do not want to) wait, the function is g(x) = ex−1, but why we pick this random-looking function
can only become clear after going through the proof.
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This implies that, by linearity of expectation,

E |M | =
∑
u∈L

ỹu +
∑
v∈R

z̃v.

On the other hand, by the assumption in the lemma statement, we have that for every edge (u, v) ∈ E,

1

β
· (yu + zv) > 1.

This means that the vector 1
β · y and 1

β · z form a feasible dual solution. Since the dual is a minimization
LP, we have,

1

β

(∑
u∈L

ỹu +
∑
v∈R

z̃v

)
> optD > optP = opt(G),

where optD is the optimal dual value, optP = opt(G) is the optimal primal value, and the inequality is by
the weak duality. Putting all these together implies that

E |M | > β · opt(G),

as desired.

The main part of the analysis is then to show that there exists a “large enough” β such that ỹ, z̃ is a
β-approximate dual solution. I.e.,

Lemma 3. For every edge e = (u, v) ∈ E, we have,

ỹu + z̃v > (1− 1/e) .

Before getting to the proof of this (not-so-easy) lemma, we note that combining this lemma with Lemma 2
immediately proves Theorem 1. The main technical part of the proof is to establish Lemma 3. For the rest
of the proof, fix any edge (u, v) ∈ E.

The key idea of the proof is to separate the randomness of pv from p−v := {pw | w ∈ R \ {v}} and further
“couple” the performance of the algorithm on (G, p) with that of (G−v, p−v) where G−v := G\{v}. We now
formalize this. Define:

• Ranking(G, p): as the deterministic algorithm obtained by running Ranking on the graph G with
p-values fixed by p.

• M<u: as the matching M computed by Ranking(G, p) before the vertex u arrives.

• Ranking(G−v, p−v): as the deterministic algorithm obtained by running Ranking on the graph G−v

with p-values fixed by p−v.

• M−v<u : as the matching M computed by Ranking(G−v, p−v) before the vertex u arrives.

For any fixed choice of p−v, consider running Ranking(G−v, p−v). Let w to be the matched pair of u in this
run (w might be ∅ also). We refer to w as the hypothetical match of u and denote it by hM(u). If w = ∅,
then we define phM(u) = 1. This also means we need to fix one property of g:

� Property 1: g(1) = 1.

This is so that (1− g(phM(u))), namely, the “hypothetical dual” value becomes 0 in the case when w = ∅.

We use these definitions to prove the following two claims. The first one lower bounds z̃v and the next
one lower bounds ỹu. Recall that we have fixed the edge (u, v) for all of this proof.
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Claim 4. For any choice of p−v,

E
[
zv | p−v

]
>
∫ phM(u)

0

g(x) dx.

Proof. Let w := hM(u) in the run of Ranking(G−v, p−v). Firstly, we claim that if we choose pv < pw, then
v will be matched in Ranking(G, p). Consider running Ranking(G, p) up until the vertex u arrives. If v is
already matched, we are done. Otherwise, if v is unmatched, then even if v was not part of the graph, we will
be computing the same exact matching, i.e., M<u = M−v<u . Now, in Ranking(G−v, p−v), we have decided
to match u to w which means the smallest unmatched p-value in the neighborhood of u under M−v<u is pw.
But now that M<u = M−v<u and pv < pw, we have that the smallest unmatched p-value in the neighborhood
of u under M<u is pv, meaning that in Ranking(G, p), the algorithm picks the edge (u, v) to be included in
M , thus matching v.

For any x ∈ [0, 1], let Pr (pv = x) denote the probability density function of pv chosen randomly from
[0, 1] at the point x. The rest of the proof now simply follows because,

E
[
zv | p−v

]
>
∫ 1

0

Pr
(
pv = x ∧ v ∈M | p−v

)
g(x) dx

(because if pv = x and v gets matched, we set zv = g(pv) = g(x))

>
∫ pw

0

Pr
(
pv = x ∧ v ∈M | p−v

)
g(x) dx (by non-negativity of g)

=

∫ pw

0

Pr
(
pv = x | p−v

)
· g(x) dx (as v will be matched whenever pv < pw)

=

∫ pw

0

g(x) dx (as we pick pv randomly from [0, 1] even conditioned on p−v)

This implies the claim.

Claim 5. For any choice of p−v,
E
[
yu | p−v

]
> 1− g(phM(u)).

Proof. We define U(M<u) ⊆ R be the set of R-vertices unmatched by M<u in Ranking(G, p) and similarly,
U(M−v<u) ⊆ R be the set of R-vertices unmatched by M−v<u in Ranking(G−v, p−v). We claim that

U(M<u) ⊇ U(M−v<u).

We prove this inductively (see Figure 4 for illustration of this proof). This is true before any vertex arrives
as both sets are equal to R. Now suppose this is true up until the arrival of some vertex u′. Let v′ be the
vertex matched by u′ in M<u. We know that v′ has the smallest p-value in N(u) ∩ U(M<u). If v′ is not
in U(M−v<u), then, removing v′ from U(M<u) does not violate the condition. On the other hand, if v′ is
in U(M−v<u), then, since by induction we have U(M<u) ⊇ U(M−v<u) until the arrival of u′, we have that v′

also has the smallest p-value in U(M−v<u). Thus, v′ will also be removed from U(M−v<u), hence, the condition
remains true. This proves the induction hypothesis.

We now have that when u arrives and picks an unmatched vertex with the smallest p-value, since
U(M<u) ⊇ U(M−v<u), the p-value of M(u) will be at most as large as p-value of M−v(u), the latter be-
ing phM(u). Thus, we have,

pM(u) 6 phM(u).

We now want a second property from g:

� Property 2: g is monotonically increasing between [0, 1].

With this property, we will then have,

E
[
yu | p−v

]
= E

[
1− g(pM(u)) | p−v

]
> 1− g(phM(u)),

which proves the claim.
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Figure 4: The only time we may violate the induction hypothesis is if upon arrival of a vertex u′, we remove
a vertex v′ ∈ U(M<u′) ∩ U(M−v<u′) only from U(M<u) and not the other one. But this cannot happen

because U(M<u′) ⊇ U(M−v<u′) by induction and thus if v′ has the smallest p-value in the neighborhood of
u′ in Ranking(G, p), it also has the smallest p-value in the same neighborhood in Ranking(G−v, p−v) also
and thus will be matched to u′ here as well.

We are now ready to wrap up the proof of Lemma 3. So far, we established that for every edge (u, v) ∈ E
and every choice of p−v,

E
[
yu | p−v

]
+ E

[
zv | p−v

]
> 1− g(phM(u)) +

∫ phM(u)

0

g(x) dx.

This implies that

ỹu + z̃v = E [yu + zv] = E
p−v

[
E
pv

[
yu + zv | p−v

]]
(by the law of conditional expectation)

> E
p−v

[
1− g(phM(u)) +

∫ phM(u)

0

g(x) dx

]
(by the equation above)

> min
θ∈[0,1]

(
1− g(θ) +

∫ θ

0

g(x) dx

)
.

(as we are replacing phM(u) with the choice θ that minimizes the RHS)

In order for us to be able to work with this g (and in fact even earlier we needed a property that made sure
g is integrable for our purpose), we will require yet another property:

� Property 3: g is convex over [0, 1] and is differentiable.

Now that we have g is convex, we can compute the min-term by differentiating and setting it equal to 0:

∂
(

1− g(θ) +
∫ θ
0
g(x) dx

)
∂θ

= −g′(θ) + g(θ) = 0,

which implies that g(θ) = g′(θ) at the minimum choice for θ. While there are still many choices for g at this
point, we can ask for even a stronger requirement, namely, that g(x) = g′(x) for all x ∈ [0, 1] (and not only
for the minimizer θ). This now forces g(x) = ex+c for some constant c. Note that this satisfies property
2 from earlier also. Finally, to satisfy property 1, we will get g(1) = e1+c = 1 which means c = −1. This
implies that if we pick

g(x) = ex−1,
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we satisfy all the properties we wanted.

But then we will have,

ỹu + z̃v > min
θ∈[0,1]

1− eθ−1 + eθ−1 − e−1 = (1− 1/e) .

This proves Lemma 3, and concludes the whole proof.
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