
CS 466/666: Algorithm Design and Analysis University of Waterloo: Fall 2023

Lecture 1
September 06, 2023

Instructor: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

Topics of this Lecture

1 Minimum Cut in Undirected Graphs 1

2 Karger’s Contraction Algorithm 2

2.1 Contraction in Graphs . 2

2.2 The Basic Contraction Algorithm . 3

2.3 The Final Algorithm . 6

We start our course by studying one of the true gems in randomized algorithms: Karger’s random
contraction algorithm for the minimum cut problem in undirected graphs [Kar93].

1 Minimum Cut in Undirected Graphs

We start by reviewing some basic definitions.

Given an undirected graph G = (V,E), a cut is any partition of the vertices into two (disjoint) non-empty
sets (S, V \S) – note that the partitions (S, V \S) and (V \S, S) refers to the same cut and so we can simply
denote a cut by a set S without loss of generality. Any cut ∅ ⊂ S ⊂ V defines a set of cut-edges, denoted
by δ(S), as the edges that have one endpoint in each side of the partition (S, V \ S). Formally,

δ(S) := {e = (u, v) ∈ E | u ∈ S ∧ v ∈ V \ S} .

We sometimes say that these edges cross the cut S. Figure 1 gives an illustration of these definitions.

Figure 1: An illustration of graph cuts and cut-edges. The vertices in S-side of the cut are marked gray
and the (V \ S)-side are marked white. The cut-edges are drawn with thick red lines.

In this lecture, we are interested in finding a minimum cut in a given undirected graph G = (V,E),
i.e., a cut with the smallest number of cut edges. We refer the size of minimum cuts in G by λ(G) which is
equivalently defined as:

λ(G) := min
∅⊂S⊂V

|δ(S)|.

1

Figure 2 gives an example.

Figure 2: An example of a minimum cut of size 2, marked by gray vertices on one side and white vertices
on the other. The cut-edges for the minimum cut are drawn with thick red lines.

We leave proving the following fact as a good exercise for the reader interested in familiarizing themselves
more with these definitions.

Fact 1. In any undirected graph G = (V,E), λ(G) is also equal to the minimum number of edges to remove
from G to make it disconnected.

You may have previously seen algorithms for finding minimum cuts using n − 1 iterations of maximum
flow1. However, we are now going to see an elegant algorithm using more elementary tools with an extremely
simple analysis.

2 Karger’s Contraction Algorithm

We start by introducing a basic graph theoretic operation at the core of Karger’s algorithm and then get to
the basic version of the algorithm, and finally, the complete algorithm itself.

2.1 Contraction in Graphs

Given an undirected graph G = (V,E) and a set A ⊆ V of vertices, the contraction of A in G is a
multi-graph2, denoted by G|A, with vertex-set V \A∪ {a} (where a is a newly defined vertex), and edge-set
including all edges in G with both-endpoints in V \ A, and new edges (a, v) for each edge (u, v) ∈ E with
u ∈ A and v ∈ V \A.

Informally speaking, contraction of A in G corresponds to replacing all vertices in A into a single vertex
a, removing all edges that were inside A, replacing all edges between A and V \ A by edges between a and
V \A, and keeping all the other edges intact. See Figure 3 for an example.

(a) The contraction set in the original graph. (b) The resulting graph.

Figure 3: An example of a graph contraction.

We will use the following properties of contractions with respect to minimum cuts.

1Throughout this course, we use n to denote the number of vertices in the underlying graph and may not specify it each
time explicitly.

2Recall that a multi-graph is the same as a graph, except that we allow more than one edge between each pair of vertices,
namely, we allow parallel edges.

2

Claim 2. For any graph G = (V,E) and any set A ⊆ V , λ(G|A) > λ(G).

Proof. Let VA := V \A∪{a} denote the vertex-set of G|A. Consider any cut (S, VA \S) in G|A and without
loss of generality assume a ∈ S. Then, the cut S \ {a} ∪ A in G has exactly the same number of cut-edges
in G as S does in G|A.

This implies that for any cut in G|A, there is a cut of the same size in G. Since λ(G) is the size of
minimum cuts, this means λ(G) can only become smaller than (or equal to) λ(G|A).

Claim 3. Fix any graph G = (V,E) and let S be a minimum cut in G. Then, for any set A ⊆ V such that
A ∩ S = ∅ or A ∩ S = A, we have λ(G|A) = λ(G).

Proof. We only prove the claim for when A∩S = ∅; the other case is symmetric by noting that if A∩S = A,
then A ∩ (V \ S) = ∅ and the sets S and (V \ S) correspond to the same cut.

Since A ∩ S = ∅, we have that δG|A(S) is exactly the same as δG(S) (where δ(·)(S) is the cut-edges of S
in the corresponding graph ‘(·)’), by the definition of a contraction. This implies that

λ(G|A) 6 |δG|A(S)| = |δG(S)| = λ(G).

Claim 3 now gives us a recipe for solving the minimum cut problem: find a set A of vertices that does
not intersect with the minimum cut, contract this set to get a smaller graph G|A, and recurse on the smaller
graph. The non-intersecting property of A together with Claim 3 allows us to recover a minimum cut of G
from that of G|A (by simply replacing the vertex a in the minimum cut with the set A). This is all well
and good except for an obvious reason: how can find a set that does not intersect a minimum cut without
knowing the minimum cut in the first place?

This is where the true brilliance of the algorithm and its use of randomization lies: There is a very simple
way of picking A randomly which ensures that with some“good” probability, we are not going to “destroy”
the minimum cut.

2.2 The Basic Contraction Algorithm

We can now present the basic version of the contraction algorithm.

Algorithm 1. basic-contraction(G): given an undirected multi-graph G = (V,E),

(i) Sample an edge e = (u, v) uniformly at random from G;

(ii) Contract the set {u, v} in G to obtain G{u,v};

(iii) Recurse on G{u,v} and continue until only two vertices are remained; then, return the sets corre-
sponding to these two (possibly) contracted vertices.

Figure 4 gives an illustration of this algorithm.

3

Figure 4: An illustration of a successful run of the basic-contraction.

We now analyze the main properties of this algorithm. The first step is to lower bound the probability
that each fixed step of the algorithm “preserves” the minimum cut.

Lemma 4. Let G = (V,E) be a multi-graph and (u, v) be a uniformly random edge chosen in the first step
of basic-contraction(G). Then,

Pr
(
λ(G) = λ(G|{u,v})

)
> 1− 2

n
,

where n is the number of vertices in G.

Proof. Notice that for any vertex v ∈ V , the singleton cut {v} has size equal to the degree of v in G,
denoted by degG(v). This implies that for all v ∈ V , degG(v) > λ(G). On the other hand, we know that∑

v degG(v) = 2|E| (this is often called the handshaking lemma); thus, |E| > n · λ(G)/2.

Fix any minimum cut S of G. If the edge (u, v) is not a cut-edge of S, then, {u, v} does not intersect
with one side of the cut S, and thus by Claim 3, we will have λ(G) = λ(G|{u,v}). This implies that,

Pr
(
λ(G) = λ(G|{u,v})

)
> Pr ((u, v) /∈ δ(S)) (by Claim 3)

= 1− |δ(S)|
|E|

(as we pick (u, v) uniformly at random from edges in E)

> 1− λ(G)

n · λ(G)/2
(as |δ(S)| = λ(G) and |E| > n · λ(G)/2 as calculated above)

= 1− 2

n
.

We can now use this lemma to bound the probability that basic-contraction outputs a minimum cut.

Lemma 5. For any multi-graph G = (V,E),

Pr (basic-contraction(G) outputs a minimum cut of G) >
2

n · (n− 1)
.

Proof. The proof is by a repeated application of Lemma 4. Notice that each contraction step reduces the
number of vertices and the algorithm stops when only two vertices are left. Thus, there are n−2 contraction
steps. For each i ∈ [n− 2], let Gi denote the resulting graph after the i-the contraction step. We thus have,

Pr (basic-contraction(G) outputs a minimum cut of G) = Pr (λ(Gn−2) = λ(G)) .

4

We are now going to calculate the RHS above. Notice that by Claim 2, we always have,

λ(Gn−2) > λ(Gn−3) · · · > λ(G1) > λ(G).

Thus, to bound the RHS, we can write,

Pr (λ(Gn−2) = λ(G)) = Pr (λ(Gn−2) = λ(Gn−3) ∧ λ(Gn−3) = λ(Gn−4) ∧ · · · ∧ λ(G1) = λ(G))

=

n−2∏
i=1

Pr (λ(Gi) = λ(Gi−1) | λ(Gi−2) = · · · = λ(G1) = λ(G)) .

(by the definition of conditional probability: Pr(A ∧B) = Pr(B) · Pr(A | B))

But each term in the RHS of the above equation corresponds to the probability that a single step of
basic-contraction preserves the minimum cut value in its contraction, which is precisely the quantity
lower bounded in Lemma 4. Thus, we have,

n−2∏
i=1

Pr (λ(Gi) = λ(Gi−1) | λ(Gi−2) = · · · = λ(G1) = λ(G)) >
n−2∏
i=1

(
1− 2

n− i+ 1

)
(by Lemma 4 and since the number of vertices in Gi−1 is n− i+ 1)

=

n−2∏
i=1

(
n− i− 1

n− i+ 1

)
=

(
n− 2

n

)
·
(
n− 3

n− 1

)
·
(
n− 4

n− 2

)
· . . . ·

(
2

4

)
·
(

1

3

)
=

2

n · (n− 1)
.

(as the terms telescopically cancel each other except for first two denominators and last two nominators)

This implies the basic-contraction(G) outputs a minimum cut of G with probability at least 2/n · (n−1),
concluding the proof.

Before continuing, let us mention an important corollary of these lemmas in bounding the total number
of different minimum cuts in a graph (notice that minimum cuts may not be unique).

Corollary 6. Any undirected graph G = (V,E) contains at most
(
n
2

)
different minimum cuts.

Proof. It can be easily verified that the conclusions of Lemma 4 and Lemma 5 is actually stronger than
stated and is the following: for any fixed minimum cut S of G,

Pr (basic-contraction(G) outputs S) >
2

n · (n− 1)
=

(
n

2

)−1
.

But now note we can write

Pr (basic-contraction(G) outputs some minimum cut) =
∑

S ∈minimum cuts

Pr (basic-contraction(G) outputs S)

(as the events for S partition the event in LHS)

> # of minimum cuts ·
(
n

2

)−1
.

(by the bounds stated above)

Given that the LHS above can be upper bounded by 1 (as it is a probability), we get the desired bound on
the number of minimum cuts.

5

2.3 The Final Algorithm

We are now almost done. Algorithm 1 already solves the problem for us except that its probability of success
is too low (and tends to zero when size of the graph goes to infinity). On the other hand, whenever we work
with randomized algorithms, we either require them to be always true and only risk on their resources,
namely, we bound their expected running time, or require them to be correct with probability at least some
large constant, typically 2/3. 3

Thus, the last step of our approach is to boost the probability of success of Algorithm 1 to be some large
constant. This can be done quite easily by simply running the algorithm multiple times and returning the
best answer. Formally,

Algorithm 2. Given an undirected multi-graph G = (V,E),

(i) Run basic-contraction(G) for n2 times independently to find the cuts S1, . . . , Sn2 ;

(ii) Return the smallest of these cuts as a minimum cut of the graph G.

Lemma 7. For any undirected multi-graph G = (V,E),

Pr (Algorithm 2 outputs a minimum cut of G) > 2/3.

Proof. By definition, Algorithm 2 fails in outputting a minimum cut only if every single one of its n2

independent runs of basic-contraction(G) fails in doing so. By Lemma 5, the probability of failure for
each of these runs is upper bounded by 1− 2/n2 (we simply upper bounded n · (n− 1) by n2). Each of these
events happen independently also and thus we have,

Pr (Algorithm 2 fails) = Pr
(
every one of n2 runs of basic-contraction(G) fail

)
6

(
1− 2

n2

)n2

(by Lemma 5 and independence of the n2 runs)

6 exp(− 2

n2
· n2) = exp(−2) < 1/3;

in the first inequality of the second line, we used the fact that 1 − x 6 e−x (we use e−x and exp(−x)
interchangeably) for every x ∈ (0, 1).4 This concludes the proof.

We conclude this lecture by noting that we did not put any emphasize on the runtime of this algorithm.
However, it is easy to see that each contraction step of Algorithm 1 can be implemented in O(n) time by
modifying the at most O(n) edges incident on the contracted vertices. This means that Algorithm 1 itself
can be run in O(n2) time. This in turn implies that Algorithm 2 is an O(n4) time algorithm. This is not
a particularly efficient algorithm for the problem but it makes up for it by being extremely simple. We will
also see later in this course how essentially the same ideas can lead to a much faster algorithm as well.

References

[Kar93] David R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In
Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium
on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 21–30. ACM/SIAM, 1993.
1

3The convention is to call the former family of algorithms Las Vegas algorithms and the latter ones Monte Carlo algorithms.
4Despite being a very simple inequality to prove, it is also extremely useful and we will be using it very often in this course.

You are strongly encouraged to prove its correctness once for yourself.

6

	1 Minimum Cut in Undirected Graphs
	2 Karger's Contraction Algorithm
	2.1 Contraction in Graphs
	2.2 The Basic Contraction Algorithm
	2.3 The Final Algorithm

